Beta 1


Title Modelling and Optimization of Power Production from Biomass Gasification and Solid Oxide Fuel Cells
Author Hansen, Troels
Nylykke, Michael Paludan-Müller
Supervisor Bang-Møller, Christian (Thermal Energy Systems, Department of Mechanical Engineering, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)
Elmegaard, Brian (Thermal Energy Systems, Department of Mechanical Engineering, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)
Ahrenfeldt, Jesper (Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)
Rokni, Masoud (Thermal Energy Systems, Department of Mechanical Engineering, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)
Institution Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark
Thesis level Bachelor thesis
Year 2011
Abstract Power production from two stage biomass gasification and solid oxide fuel cells (SOFC) was simulated in Dynamic Network Analysis (DNA) as a reference system. The reference system was simulated resulting in a thermal efficiency of ηth = 46% based on lower heating value (LHV). Various optimization concepts were developed and implemented in the reference system and evaluated in terms of thermal efficiency and operational feasibility. Implementation of micro gas turbines (MGTs), gas engines, methanation reactors and splitting up the product gas to separately heat the pyrolysis reactor and preheat the air to the gasifier was investigated. It was found that the heat from the SOFC had to be utilized in an efficient way to increase thermal efficiency. The highest thermal efficiency was obtained by combining splitting up the product gas, implementing a MGT system and a methanation reactor to increase the methane concentration in the product gas before being fed to the SOFC. By combining these optimizations a significant increase in thermal efficiency compared to reference system was obtained resulting in ηth = 63% (LHV).
Abstract El-produktionen fra totrins biomasseforgasning og faststofoxidbrændselsceller blev simuleret i Dynamic Network Analysis (DNA), og et referencesystem blev bygget op med en termisk virkningsgrad på ηth = 46% baseret på nedre brændværdi (LHV). Flere optimeringskoncepter blev udviklet og implementeret i referencesystemet og vurderet på baggrund af termisk virkningsgrad og operationel gennemførlighed. Implementering af microgasturbiner (MGTs), gasmotorer, metaneringsenheder samt opsplitning af forgasningsgassen for separat at opvarme pyrolyseenheden og forvame luften til forgasseren blev undersøgt. Det blev slået fast at for at opnå en høj termisk virkningsgrad, skulle temperaturerne fra faststofoxidbrændselscellen udnyttes på en effektiv måde. Den højeste termiske virkningsgrad blev opnået ved at kombinere opsplitning a forgasningsgassen, indsætte en metaneringsenhed til at forøge metanindholdet i forgasningsgasssen før den blev trukket ind i faststofoxidbrændselscellen samt implementere et microgasturbineanlæg. Ved at kombinere disse optimeringer steg virkningsgraden markant, i forhold til referencesystemet, og nåede op på ηth = 63% (LHV).
Imprint DTU Mechanical Engineering
Pages 519
Series MEK - TES - EP - 2011 - 11
Fulltext
Original PDF Bachelor_Thesis_Troels_Hansen_and_Michael_Nylykke.pdf (3.43 MB)
Admin Creation date: 2011-11-11    Update date: 2011-11-11    Source: dtu    ID: 287117    Original MXD