Beta 1


Title Analysis of Adiabatic Liquid Piston Compressed Air Energy Storage (ALP-CAES)
Author Kahle, Kristian Bo
Supervisor Pedersen, Allan Schrøder (Materials Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)
Reinholdt, Lars
Elmegaard, Brian (Thermal Energy Systems, Department of Mechanical Engineering, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark)
Institution Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark
Thesis level Bachelor thesis
Year 2011
Abstract Energy storage is of interest today and in the future. This report presents an initial analysis of Adiabatic Liquid Piston - Compressed Air Energy Storage (ALP-CAES). A Compressed Air Energy Storage (CAES) system using liquid pump and turbine technology, instead of compressors and gas turbines. The system operates without the consumption of fossil fuels. The results are strictly based on mathematical modelling. Results show, that it is a necessity to work at a low varying pressure range. By doing so, the temperature gradient is minimized ensuring a low rate of heat transfer across the gas-liquid interface. Utilizing a large underground cavern showed to be a great way of limiting heat transfer to the surroundings. The thermodynamic efficiency of such a system thus showed to be close to 99%. The most succesful setup showed a round-trip efficiency of 83.5%. Additionally, the analysis showed that the system is scalable. ALP-CAES thus has the potential to become technologically competitive to other storage methods.
Abstract Energilagring er relevant i dag og i fremtiden. Denne rapport indeholder en indledende analyse af Adiabatic Liquid Piston - Compressed Air Energy Storage (ALP-CAES). Et Compressed Air Energy Storage (CAES) system der benytter væske- pumpe og turbine teknologi, i stedet for kompressorer og gasturbiner. Systemet drives uden forbrænding af fossile brændstoffer. Resultaterne er baseret på matematisk modellering. Resultaterne viser, at det er en nødvendighed at arbejde med et lavt varierende tryk. Ved at sørge for dette, minimeres temperaturgradienten der derved sikrer en lav varmeoverførsel mellem gas-væske overfladen. At benytte en stor underjordisk kaverne, viste sig at være en god måde at begrænse varmeoverførsel til omgivelserne. Den termodynamiske virkningsgrad af et sådant system viste sig at være tæt på 99%. Det mest succesfulde system viste en tur-retur effektivit på 83.5%. Derudover viste analysen, at systemet er skalerbart. ALP-CAES har således potentialer til at blive teknologisk konkurrencedygtig i forhold til andre energilagringsmetoder.
Imprint DTU Mechanical Engineering
Pages 134
Series MEK - TES - EP - 2011 - 09
Fulltext
Original PDF prod21323243876075_AnalysisOfAdiabaticLiquidPistonCompressedAirEnergyStorage_1.pdf (4.88 MB)
Admin Creation date: 2011-12-14    Update date: 2011-12-14    Source: dtu    ID: 314444    Original MXD